3.4.96 \(\int \frac {x^{7/2}}{(b x^2+c x^4)^{3/2}} \, dx\) [396]

Optimal. Leaf size=260 \[ \frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {x^{3/2} \left (b+c x^2\right )}{b \sqrt {c} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}+\frac {x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{b^{3/4} c^{3/4} \sqrt {b x^2+c x^4}}-\frac {x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{2 b^{3/4} c^{3/4} \sqrt {b x^2+c x^4}} \]

[Out]

x^(5/2)/b/(c*x^4+b*x^2)^(1/2)-x^(3/2)*(c*x^2+b)/b/c^(1/2)/(b^(1/2)+x*c^(1/2))/(c*x^4+b*x^2)^(1/2)+x*(cos(2*arc
tan(c^(1/4)*x^(1/2)/b^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*x
^(1/2)/b^(1/4))),1/2*2^(1/2))*(b^(1/2)+x*c^(1/2))*((c*x^2+b)/(b^(1/2)+x*c^(1/2))^2)^(1/2)/b^(3/4)/c^(3/4)/(c*x
^4+b*x^2)^(1/2)-1/2*x*(cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)))*
EllipticF(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2))*(b^(1/2)+x*c^(1/2))*((c*x^2+b)/(b^(1/2)+x*c^(1/2
))^2)^(1/2)/b^(3/4)/c^(3/4)/(c*x^4+b*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 260, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {2048, 2057, 335, 311, 226, 1210} \begin {gather*} -\frac {x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{2 b^{3/4} c^{3/4} \sqrt {b x^2+c x^4}}+\frac {x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{b^{3/4} c^{3/4} \sqrt {b x^2+c x^4}}+\frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {x^{3/2} \left (b+c x^2\right )}{b \sqrt {c} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(7/2)/(b*x^2 + c*x^4)^(3/2),x]

[Out]

x^(5/2)/(b*Sqrt[b*x^2 + c*x^4]) - (x^(3/2)*(b + c*x^2))/(b*Sqrt[c]*(Sqrt[b] + Sqrt[c]*x)*Sqrt[b*x^2 + c*x^4])
+ (x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[c]*x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1
/4)], 1/2])/(b^(3/4)*c^(3/4)*Sqrt[b*x^2 + c*x^4]) - (x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[
c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(2*b^(3/4)*c^(3/4)*Sqrt[b*x^2 + c*x^4])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 2048

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-c^(j - 1))*(c*x)^(m - j
 + 1)*((a*x^j + b*x^n)^(p + 1)/(a*(n - j)*(p + 1))), x] + Dist[c^j*((m + n*p + n - j + 1)/(a*(n - j)*(p + 1)))
, Int[(c*x)^(m - j)*(a*x^j + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[p] && LtQ[0, j, n]
 && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[p, -1]

Rule 2057

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[c^IntPart[m]*(c*x)^FracPa
rt[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p])), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rubi steps

\begin {align*} \int \frac {x^{7/2}}{\left (b x^2+c x^4\right )^{3/2}} \, dx &=\frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {\int \frac {x^{3/2}}{\sqrt {b x^2+c x^4}} \, dx}{2 b}\\ &=\frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {\left (x \sqrt {b+c x^2}\right ) \int \frac {\sqrt {x}}{\sqrt {b+c x^2}} \, dx}{2 b \sqrt {b x^2+c x^4}}\\ &=\frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {\left (x \sqrt {b+c x^2}\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{b \sqrt {b x^2+c x^4}}\\ &=\frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {\left (x \sqrt {b+c x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {b} \sqrt {c} \sqrt {b x^2+c x^4}}+\frac {\left (x \sqrt {b+c x^2}\right ) \text {Subst}\left (\int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {b}}}{\sqrt {b+c x^4}} \, dx,x,\sqrt {x}\right )}{\sqrt {b} \sqrt {c} \sqrt {b x^2+c x^4}}\\ &=\frac {x^{5/2}}{b \sqrt {b x^2+c x^4}}-\frac {x^{3/2} \left (b+c x^2\right )}{b \sqrt {c} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}+\frac {x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{b^{3/4} c^{3/4} \sqrt {b x^2+c x^4}}-\frac {x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{2 b^{3/4} c^{3/4} \sqrt {b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.02, size = 60, normalized size = 0.23 \begin {gather*} \frac {2 x^{5/2} \sqrt {1+\frac {c x^2}{b}} \, _2F_1\left (\frac {3}{4},\frac {3}{2};\frac {7}{4};-\frac {c x^2}{b}\right )}{3 b \sqrt {x^2 \left (b+c x^2\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(7/2)/(b*x^2 + c*x^4)^(3/2),x]

[Out]

(2*x^(5/2)*Sqrt[1 + (c*x^2)/b]*Hypergeometric2F1[3/4, 3/2, 7/4, -((c*x^2)/b)])/(3*b*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 203, normalized size = 0.78

method result size
default \(-\frac {x^{\frac {5}{2}} \left (c \,x^{2}+b \right ) \left (2 \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, \EllipticE \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) b -\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {x c}{\sqrt {-b c}}}\, \EllipticF \left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right ) b -2 c \,x^{2}\right )}{2 \left (c \,x^{4}+b \,x^{2}\right )^{\frac {3}{2}} c b}\) \(203\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)/(c*x^4+b*x^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/(c*x^4+b*x^2)^(3/2)*x^(5/2)*(c*x^2+b)*(2*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1
/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/
2))*b-((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1
/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*b-2*c*x^2)/c/b

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^(7/2)/(c*x^4 + b*x^2)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.09, size = 64, normalized size = 0.25 \begin {gather*} \frac {{\left (c x^{2} + b\right )} \sqrt {c} {\rm weierstrassZeta}\left (-\frac {4 \, b}{c}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, b}{c}, 0, x\right )\right ) + \sqrt {c x^{4} + b x^{2}} c \sqrt {x}}{b c^{2} x^{2} + b^{2} c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="fricas")

[Out]

((c*x^2 + b)*sqrt(c)*weierstrassZeta(-4*b/c, 0, weierstrassPInverse(-4*b/c, 0, x)) + sqrt(c*x^4 + b*x^2)*c*sqr
t(x))/(b*c^2*x^2 + b^2*c)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{\frac {7}{2}}}{\left (x^{2} \left (b + c x^{2}\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(7/2)/(c*x**4+b*x**2)**(3/2),x)

[Out]

Integral(x**(7/2)/(x**2*(b + c*x**2))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(c*x^4+b*x^2)^(3/2),x, algorithm="giac")

[Out]

integrate(x^(7/2)/(c*x^4 + b*x^2)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^{7/2}}{{\left (c\,x^4+b\,x^2\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)/(b*x^2 + c*x^4)^(3/2),x)

[Out]

int(x^(7/2)/(b*x^2 + c*x^4)^(3/2), x)

________________________________________________________________________________________